

Reg. No.:

Question Paper Code: 91410

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019 Seventh/Eighth Semester

Computer Science and Engineering

CS 6702 – GRAPH THEORY AND APPLICATIONS
(Common to Information Technology)
(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Define circuit.
- 2. Find path length of the following tree.

- 3. How will you calculate rank of a graph?
- 4. Is K₆ is a planar graph? Justify it.
- 5. Find at least two dominating set for the following graph.

6. Define asymmetric digraphs.

7	. I	n h 7 ca	ow many ways can a president, a treasurer and a secretary be chosen among ndidates ?	
8	. I	woF	many arrangements of the letter ARRANGE can be made?	
9	. I	rino	the generating function for the sequence of numbers 4, 4, 4, 4, 4	
			the recurrence relation for the numbers 1, 5, 17, 53, 161, 485,	
			PART – B (5×13=65 Max	rks)
11.	a) i)	Show that the maximum number of edges in a simple graph with n vertices is $n(n-1)/2$.	(7)
		ii)	Prove that any two simple connected graphs with n vertices, all of degree two, are isomorphic.	(6)
			(OR)	
	b) i)	Prove that a simple graph with n vertices and k components can have at most $(n - k)$ $(n - k+1)/2$ edges. Give an example.	(6)
		ii)	Prove that if a connected graph G is decomposed into subgraph g_1 and g_2 , there must be at least one vertex common between g_1 and g_2 .	(7)
12.	a)	i) ii)	Show that a Hamiltonian path is a spanning tree. Explain. A connected planar graph with n vertices and e edges has $e-n+2$ regions.	(6) (7)
			(OR)	(')
	b)	i)	What does cyclomatic number represent? How it will be calculated? Explain it?	(6)
		ii)	Prove that the vertex connectivity of any graph can never exceed the edge connectivity.	(7)
13.	a)	i)	A graph of n vertices is a complete graph iff its chromatic polynomial is	1
			$P_{n}(\lambda) = \lambda (\lambda - 1)(\lambda - 2) \dots (\lambda - n + 1)$	(7)
		ii)	A covering g of a graph is minimal iff g contains no paths of length three or more.	(6)
			(OR)	` '
	b)	i)	A graph with atleast one edge is 2-chromatic iff it has no circuits of odd length.	(7)
		ii)	Prove that any digraph, the sum of the in-degrees of all vertices is equal to sum of its out-degrees.	(6)
			t _i	

14. a) i) In how many ways can an interview panel of 3 members be formed from 3 Engineers, 2 Psychologists and 3 Managers if atleast 1 Engineer must be **(6)** included? ii) Find the number of positive integers not exceeding 100 that are not divisible **(7)** by 5 or 7. (OR) b) i) How many binary strings of length 8 that do not contain at least 8 consecutive **(7)** 0's ? ii) How many words can be formed by using the letters from the word **(6)** "DRIVER" such that all the vowels are never together? 15. a) i) The sequence 1, 3, 7, 15, 31, 63,... satisfies the recurrence relation $a_n = 3a_{n-1} - 2a_{n-2}$ Find the generating function for it. **(7)** ii) Find the sequence generated by the following generation function $\frac{1}{1-4x}$ **(6)** (OR) **(6)** b) i) Find the generating function for the sequence 1, -2, 4, -8, 16,.... ii) Find the generating function for the Fibonacci sequence using recurrence **(7)** relation. $(1\times15=15 \text{ Marks})$ PART - C16. a) i) How can you verify the graphs are isomorphic? Are the following graphs **(6)** are isomorphic? Justify it. **(9)** ii) Explain Kruskal's method with suitable example. (OR) (7)b) i) Write short notes on Dimer problem. ii) Discuss about exponential generating functions with suitable example. **(8)**

the control was a substitute of the control of the		